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Chapter 9

SPATIAL VARIABILITY

This chapter will examine the spatial variability of

evaporation and some soil properties associated with

evaporation, namely the soil surface temperature and profile

water content.  The change in storage due to irrigation will

also be examined.  Data sets that will be used are those that

were used in Chapter 8; midday temperature difference between

dry and drying soil, measured in Experiments 2 and 3; profile

water contents and change in storage due to irrigation,

measured in Experiment 2; and evaporation from ML's measured

in Experiment 3.  Each of these variables was measured at the

57 field locations described in Chapter 2.

Each variable was also measured at several different

times following irrigation, usually on a daily basis.  The

temporal nature of these data sets complicates the analysis of

spatial variability since the nature of this variability may

change with time.  However, as pointed out in the previous

chapter, time invariance of a data set implies at least

partial time invariance of the spatial variability.  This

chapter will demonstrate one method, the relative variogram,

of combining data from several days into a single expression

of the spatial variability.

Several researchers have studied the spatial variability
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of soil water content and surface temperature (e.g. Vauclin et

al. 1982, Viera et al. 1983, Yates and Warrick 1987, Mulla

1988, Yates et al. 1988).  Among tools used by these and other

authors to describe spatial variability are the covariance,

the autocorrelation function, the variogram and the

covariogram.  Use of these tools implies the hypothesis that

sample values are not randomly distributed in space but are to

some degree autocorrelated in space with samples taken closer

together more likely to have similar values than those taken

farther apart.  Two reviews of spatial variability analysis,

with examples pertaining to soil and water science, are by

Vieira et al. (1983) and Warrick et al. (1986).   Unless

otherwise noted the following discussion derives from these

two sources.

The Variogram.

The most useful tool for studying spatial variability may

be the variogram since it can be used in the kriging process

to estimate values of the variable at unsampled locations in

the field.  The variogram, ((h), is defined by:

((h) = Var[Z(x) - Z(x + h)]/2                [9-1]

where Var is the variance operator.  The location vector, x,

represents the position of each sample value, Z(x), in 1, 2 or
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3 dimensions.  The separation vector, h, represents the

distance and direction between sample pairs.  The variogram is

defined under the intrinsic hypothesis: 1) the expected value

of Z(x) exists and has the same value over all subparts of the

region of interest (no drift); 2) Var[Z(x) - Z(x + h)] is

defined for all vectors, h, and is a unique function of h.

The variogram may be estimated by the sample variogram,

(* which is:

(*(h) = 1/[2 N(h)] E
i=1

N(h)
 [Z(xi + h) - (Z(xi)]

2    [9-2]

where N(h) is the number of sample pairs separated by the

vector h, and the xi are the samples so separated.  In

practice the vector h is defined as a class with upper and

lower limits on the direction and distance.  This has the

advantage of increasing the precision of each estimate by

increasing the number of sample pairs included in it.  A

disadvantage is that as class size increases the distance, h,

to which (*(h) pertains, becomes increasingly ill defined.

Usually the average separation distance, for all data

pairs in a class, is used for h in plots of (*(h) vs. h for

example.  In practice, as class size changes the sample

variogram may change radically.  Therefore it is well to

calculate (*(h) for a number of different class sizes in order

to choose that class size which is most appropriate (results



274

in variograms which look best to the user).  Distance classes

are often assigned in a regularly increasing fashion such that

each class has identical width.  With some data sets this

practice has the disadvantage of causing some classes to

contain low numbers of data pairs causing (* to be poorly

estimated.  It often happens that the lower numbers of data

pairs occur for classes at the low and high ends of separation

distance.  For use with kriging, information on the shape of

the variogram is most important at the lower separation

distances.  One way to address this problem is to assign class

widths dynamically such that each class contains an equal

number of data pairs.  A disadvantage of this practice is that

it may result in some classes being very wide.

The Relative Variogram.

It sometimes happens that stationarity of the mean exists

only over discrete subregions of a larger region.  In this

case the sample variogram may be estimated by Equation 9-2 for

each subregion but not for the larger region as a whole.

However, variograms from each subregion may be transformed by

dividing by the square of the mean resulting in the relative

variogram which is defined for the kth region as:

(k(h) = Var[Z(x) - Z(x + h)]/(2:k
2)       [9-3]
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where :k is the mean for the kth region (Cressie 1985).  The

sample relative variogram, (*k(h), is then:

(*k(h) = 1/[2:k
2N(h)] E

i=1

N(h)
 [Z(xi + h) - (Z(xi)]

2    [9-4]

Sample relative variograms from each region may then be

compared and/or combined perhaps resulting in a more precise

estimate of the basic variogram shape than would be possible

with the more limited number of samples occurring in any one

region.  The subregions discussed here need not occur in space

but may also occur in time.  The variables to be examined in

this chapter have the common characteristic that separate data

sets are available for several different days and the mean for

each day is different.  Thus the relative variogram may be a

useful tool for reducing these data to a single variogram and

perhaps improving the variogram estimation.

Kriging.

In order to use the sample variogram information in

kriging it is necessary to model the sample variogram.  The

negative of a variogram model must be a positive definite

function.  Examples of models fitting this criterion are given

by Warrick et al. (1986).  Given the sample values Z(xi) and

a variogram model it is possible to estimate the sample value
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at an unmeasured location, xo, using the kriging estimator:

Z*(xo) = E
i=1

N
 8iZ(xi)          [9-5]

where the 8i are constrained by:

E
i=1

N
 8i = 1                         [9-6]

Equation 9-6 is equivalent to stating that the expected value

of the error of estimation, [Z*(xo) - Z(xo)], is zero.  The

kriging equations result from minimizing the variance of the

error of estimation subject to 9-6 with the result that

Equation 9-5 is a best estimator of Z(xo).

If second order stationarity exists then not only is the

mean of the error term zero, but the covariance, Cov[Z(x),Z(x

+ h)], exists and is uniquely defined for the separation

distance, h.  This is a stronger assumption than the intrinsic

hypothesis but under second order stationarity the kriging

variance, F2
E(xo), is:

F2
E(xo) = F

2 - : - E
i=1

N
 8iCov(xo,xi)      [9-7]

where : is a Lagrange multiplier which is estimated along with

the 8i by the kriging equations, and F2 is the variance of the

variable measured.  Under second order stationarity the

covariance, Cov(xo,xi), is:
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Cov(xo,xi) = Cov(0) - ((xi,xo)      [9-8]

where C(0) is simply the variance of the measured variable and

can be estimated by the sample variance.  Thus if second order

stationarity exists the covariance may be used in place of the

variogram in the kriging equations.  This results in

computational advantages for the matrix inversion.

Cokriging.

Cokriging is a form of kriging using samples from two (or

more) variables, say Z1 and Z2, measured at the same location.

One of the variables may be undersampled with respect to the

other so that at every location there is a sample for Z1 but

Z2 is sampled at only some of the locations.  If the variables

are correlated cokriging may be used to estimate values of the

undersampled variable at locations where the other variable

was measured.  Regardless of whether one variable is

undersampled, the estimation variance of both variables will

be reduced by cokriging.  

Yates and Warrick (1987), using cokriging of soil

moisture content and surface temperature, found that cokriging

was worthwhile if the correlation coefficient exceeded 0.5.

Mulla (1988) found that cokriging of water content and surface

temperature reduced the cokriging estimation variance by one

half as compared to the kriging estimation variance for water



278

content.  In the present study the midday surface temperature

difference between dry and drying soil was found to be highly

correlated with evaporation on a daily basis.  Therefore it

may be possible to use cokriging to improve the estimation of

evaporation and/or reduce the number of ML based evaporation

samples needed while continuing to sample surface temperature

at all locations.  Vauclin et al. (1983) and Viera et al.

(1982) present the cokriging equations in some detail.

Software.

Sample variogram calculations were done using a program

written by the author after that presented by Journel and

Huijbregts (1978) and following suggestions by Scott R. Yates.

This program allowed class sizes to be dynamically changed so

that each class contained equal numbers of sample pairs.  This

technique facilitated variogram estimation by ensuring that

the lowest class contained sufficient pairs to be somewhat

independent of extreme values.  The program also allowed

calculation of the sample relative variogram.

After the sample variograms were estimated and modeled,

kriging was done using the GEO-EAS software developed by the

U.S. Environmental Protection Agency (Englund and Sparks

1988).  This software uses the covariance function in the

kriging equations.
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Although GEO-EAS allows calculation of the sample

relative variogram it provides no means of exporting the

calculated values thus frustrating any attempt to combine

variograms from different regions (or days).  GEO-EAS also

calculates the relative variogram differently from Equation

9-4.  Rather than dividing each variogam value by the overall

mean squared, GEO-EAS calculates the mean only for those

sample values used in a given class and divides the sample

variogram for each class by the mean squared for that class.

Since this study was more concerned with changes in the mean

from day to day than from class to class the method shown in

Equation 9-4 was preferred.
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Statistical Distribution Tests.

If the variable being studied is log-normally distributed

interpretation of the sample variogram may be easier if the

data are transformed (by taking the natural logarithm) before

computing the sample variogram.  The Kolmogorov-Smirnov test

was used to find if the data were distributed significantly

differently than normally or log-normally (Press et al. 1986).

The null and alternate hypotheses are:

H0: The variable has the specified distribution.

H1:  The distribution is other than specified.

The decision rule is:

Accept H0 if D # c

where the statistic D is the largest of all absolute values of

the differences between the specified CDF and the observed

cumulative histogram, and c is the critical value of the

statistic for a chosen level of probability.  The observed

value of the statistic is denoted by 'd'.

In the following tables large values of the observed

value, d, and small values of probability indicate that the

sample is not normally (or not lognormally) distributed.  The

probability values are for Prob (D > d).  If the null

hypothesis is true then the observed value, d, should be

smaller than the KS statistic, D.  If the probability of this
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Kolmogorov-Smirnov tests for catch can depths at access tubes, 3
irrigations, Experiment 2.

Small values of probability indicate that the cumulative
distribution of the data is significantly different from the
normal distibution.  For tests of log-normality, sample values
that were zero or negative were excluded from analysis.

            Normal           Log-Normal              c for
Irrig.  KS d    Prob. D>d   KS d   Prob. D>d   N   P(0.10, N)
  1     0.1850    0.0404    0.2472   0.0019    57    0.1616
  2     0.2309    0.0046    0.3023   0.0001    57    0.1616
  3     0.1631    0.0963    0.2264   0.0058    57    0.1616

Table 9-1.

is small then the null hypothesis cannot be accepted (at

whatever level of significance is desired).

Catch can depths measured at the 57 access tube locations

were neither normally nor log-normally distributed when tested

at the 10% level of significance (Table 9-1).  However

probabilities were much higher, approaching 10%, for the test

of normality so for practical purposes these data were

considered to be normally distributed.

The change in storage due to irrigation was also neither

normally nor log-normally distributed.  These tests were

significant at the 0.1% level of probability or better (Table

9-2).
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Kolmogorov-Smirnov tests for change in storage due to irrigation,
3 irrigations, Experiment 2.

Small values of probability indicate that the cumulative
distribution of the data is significantly different from the
normal distibution.  For tests of log-normality, sample values
that were zero or negative were excluded from analysis.

Tests for Normality.               c for
Irrig.  KS d    Prob. D>d    N   P(0.10, N)
  1    0.3456    0.0000      56    0.1630  
  2    0.3417    0.0000      56    0.1630  
  3    0.6938    0.0000      52    0.1692  

Tests for Log-Normality.           c for
Irrig.  KS d    Prob. D>d    N   P(0.10, N)
  2    0.2646    0.0008      56    0.1630  
  2    0.2884    0.0003      53    0.1676  
  3    0.8934    0.0000      52    0.1692  

Table 9-2.

Profile water content was measured at the 57 locations on

17 different days.  Only on the last day, day 105, was profile

water content shown to be distributed other than normally, and

this test had a probability of 0.096, just below the 10% level

(Table 9-3).  On 5 days the data were significantly different

from log-normally distributed and on other days probability

levels were substantially lower than for the normality tests.

Thus these data were assumed to be normally distributed.

The midday temperature depression (To,max - Td,max) was

measured on 20 days during Experiment 2.  Distributions were

significantly different from normal on each of the 3 days

after irrigation (days 80, 92 and 100) and also on days 96,

100, 103 and 104 (Table 9-4).  Tests for log-normality showed
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Kolmogorov-Smirnov tests for profile water contents,
Experiment 2.

Small values of probability indicate that the cumulative
distribution of the data is significantly different from the
normal distibution.  For tests of log-normality, sample values
that were zero or negative were excluded from analysis.

Tests for Normality.         c for
Day     KS d    Prob. D>d  P(0.10, N)  N  
 77    0.1267    0.3196     0.1616     57
 80    0.0963    0.6658     0.1616     57
 81    0.1065    0.5489     0.1630     56
 82    0.1042    0.5664     0.1616     57
 83    0.1008    0.6085     0.1616     57
 85    0.1332    0.2638     0.1616     57
 90    0.1284    0.3041     0.1616     57
 92    0.1297    0.2926     0.1616     57
 93    0.0949    0.7053     0.1645     55
 94    0.1337    0.2601     0.1616     57 
 95    0.1305    0.2859     0.1616     57
 96    0.1221    0.3635     0.1616     57
 98    0.1375    0.2403     0.1630     56
100    0.1439    0.2046     0.1645     55
102    0.1321    0.2928     0.1645     55
103    0.1284    0.3463     0.1676     53
105    0.1708    0.0963     0.1692     52

Tests for Log-Normality.     c for
Day     KS d    Prob. D>d  P(0.10, N)  N  
 77    0.1655    0.0880     0.1616     57
 80    0.1247    0.3377     0.1616     57
 81    0.1323    0.2805     0.1630     56
 82    0.1321    0.2729     0.1616     57
 83    0.1287    0.3013     0.1616     57
 85    0.1658    0.0871     0.1616     57
 90    0.1584    0.1146     0.1616     57
 92    0.1569    0.1208     0.1616     57
 93    0.1245    0.3617     0.1645     55
 94    0.1629    0.0971     0.1616     57
 95    0.1604    0.1066     0.1616     57
 96    0.1526    0.1406     0.1616     57
 98    0.1672    0.0873     0.1630     56
100    0.1647    0.1013     0.1645     55
102    0.1526    0.1541     0.1645     55
103    0.1525    0.1699     0.1676     53
105    0.1904    0.0460     0.1692     52

Table 9-3.
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Kolmogorov-Smirnov tests for midday temperature depression (To,max

- Td,max), Experiment 2.

Small values of probability indicate that the cumulative
distribution of the data is significantly different from the
normal distibution.  For tests of log-normality, sample values
that were zero or negative were excluded from analysis.

Tests for Normality.                         Tests for Log-Normality.
                            c for                                  c for
Day    KS d    Prob. D>d  P(0.10, N)  N       KS d    Prob. D>d  P(0.10, N)  N 
 80   0.8159    0.0000     0.1660     54     0.8148    0.0000     0.1660     54
 81   0.1646    0.0962     0.1630     56     0.1880    0.0382     0.1630     56
 82   0.0851    0.8035     0.1616     57     0.0910    0.7332     0.1616     57
 83   0.0629    0.9779     0.1616     57     0.0811    0.8479     0.1616     57
 84   0.1507    0.1503     0.1616     57     0.1941    0.0272     0.1616     57
 85   0.0815    0.8434     0.1616     57     0.0995    0.6251     0.1616     57
 86   0.0730    0.9220     0.1616     57     0.0954    0.6769     0.1616     57
 87   0.0662    0.9643     0.1616     57     0.0813    0.8452     0.1616     57
 92   0.2577    0.0010     0.1616     57     0.3122    0.0000     0.1616     57
 93   0.1098    0.4980     0.1616     57     0.1447    0.1837     0.1616     57
 94   0.1335    0.2711     0.1630     56     0.1512    0.1546     0.1630     56
 95   0.1253    0.3325     0.1616     57     0.2124    0.0117     0.1616     57
 96   0.1842    0.0447     0.1630     56     0.2132    0.0123     0.1630     56
 97   0.1320    0.2738     0.1616     57     0.1695    0.0755     0.1616     57
 98   0.1044    0.5634     0.1616     57     0.1425    0.1970     0.1616     57
 99   0.0695    0.9458     0.1616     57     0.0761    0.8960     0.1616     57
100   0.2650    0.0009     0.1645     55     0.2857    0.0003     0.1645     55
102   0.2395    0.0041     0.1660     54     0.2651    0.0010     0.1660     54
103   0.2289    0.0051     0.1616     57     0.2682    0.0005     0.1616     57
104   0.2522    0.0014     0.1616     57     0.2998    0.0001     0.1616     57

Table 9-4.

that for 11 of the 20 days the data were significantly

different from log-normally distributed.  Overall the data

appear to be normally distributed.

During Experiment 3 midday temperature depression was

measured on 15 days for Run 1 and 10 days for Run 2.  On only

4 of the 25 days were data significantly different from normal

(Table 4-5).  On 7 out of 25 days the K-S tests showed that

the data were significantly different from log-normally

distributed.  These data seem to be normally distributed.
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Kolmogorov-Smirnov tests for midday temperature depression (To,max -
Td,max), Experiment 3.

Small values of probability indicate that the cumulative distribution of
the data is significantly different from the normal distibution.  For
tests of log-normality, sample values that were zero or negative were
excluded from analysis.

Tests for Normality. )))))))))))))))    Tests for Log-Normality.  )))))))
                             c for                                   c for
Name    KS d    Prob. D>d  P(0.10, N)   N       KS d    Prob. D>d  P(0.10, N)   N  
Run 1.                                                                            
 304   0.1718    0.0735      0.1630     56     0.1095    0.5129      0.1630     56
 305   0.1870    0.0398      0.1630     56     0.2155    0.0121      0.1645     55
 308   0.1379    0.2373      0.1630     56     0.1642    0.0977      0.1630     56
 309   0.0720    0.9337      0.1630     56     0.0834    0.8304      0.1630     56
 311   0.1209    0.3857      0.1630     56     0.1375    0.2403      0.1630     56
 312   0.0710    0.9403      0.1630     56     0.0967    0.6721      0.1630     56
 313   0.1010    0.6174      0.1630     56     0.0911    0.7420      0.1630     56
 314   0.1160    0.4380      0.1630     56     0.0779    0.8859      0.1630     56
 315   0.0624    0.9813      0.1630     56     0.0975    0.6618      0.1630     56
 316   0.0666    0.9648      0.1630     56     0.1225    0.3701      0.1630     56
 317   0.1058    0.5572      0.1630     56     0.4365    0.0000      0.1883     42
 318   0.0790    0.8760      0.1630     56     0.1280    0.3175      0.1630     56
 319   0.0757    0.9053      0.1630     56     0.1208    0.3877      0.1630     56
 320   0.0720    0.9334      0.1630     56     0.0978    0.6574      0.1630     56
 321   0.0806    0.8602      0.1630     56     0.1111    0.4940      0.1630     56
Run 2.                                                                            
 329   0.1101    0.4947      0.1616     57     0.1499    0.1544      0.1616     57
 330   0.2561    0.0011      0.1616     57     0.2811    0.0002      0.1616     57
 331   0.1186    0.3990      0.1616     57     0.1891    0.0339      0.1616     57
 332   0.1068    0.5339      0.1616     57     0.0925    0.7138      0.1616     57
 333   0.1472    0.1693      0.1616     57     0.1085    0.5130      0.1616     57
 334   0.1695    0.0755      0.1616     57     0.1341    0.2568      0.1616     57
 335   0.0941    0.6935      0.1616     57     0.1356    0.2457      0.1616     57
 336   0.0667    0.9615      0.1616     57     0.0760    0.8973      0.1616     57
 337   0.1579    0.1167      0.1616     57     0.2168    0.0094      0.1616     57
 338   0.1078    0.5222      0.1616     57     0.1877    0.0360      0.1616     57

Table 9-5.

Data for evaporation at the 57 locations were also taken

for 25 days during Experiment 3.  For 18 days the data were

significantly different from normal in distribution (Table

9-6).  For 16 days the data were not log-normally distributed

at the 10% level of significance.  These data appear to follow

neither a normal nor log-normal distribution.
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Kolmogorov-Smirnov tests for evaporation (mm), Experiment 3.

Small values of probability indicate that the cumulative
distribution of the data is significantly different from the
normal distibution.  For tests of log-normality, sample
values that were zero or negative were excluded from
analysis.

Tests for Normality. )))))))))))))))    Tests for Log-Normality. ))))))))
                             c for                                   c for
Name    KS d    Prob. D>d  P(0.10, N)   N       KS d    Prob. D>d  P(0.10, N)   N  
Run 1.                                                                            
 304   0.6686    0.0000      0.1645     55     0.6043    0.0000      0.1645     55
 305   0.2180    0.0097      0.1630     56     0.1483    0.1705      0.1630     56
 308   0.1876    0.0388      0.1630     56     0.1935    0.0302      0.1630     56
 309   0.1014    0.6121      0.1630     56     0.1085    0.5251      0.1630     56
 311   0.1590    0.1178      0.1630     56     0.1548    0.1368      0.1630     56
 312   0.1620    0.1057      0.1630     56     0.1092    0.5161      0.1630     56
 313   0.2090    0.0150      0.1630     56     0.1314    0.2881      0.1630     56
 314   0.1710    0.0757      0.1630     56     0.1296    0.3040      0.1630     56
 315   0.2028    0.0200      0.1630     56     0.1823    0.0484      0.1630     56
 316   0.1734    0.0689      0.1630     56     0.1880    0.0383      0.1630     56
 317   0.1152    0.4472      0.1630     56     0.1702    0.0781      0.1630     56
 318   0.2196    0.0090      0.1630     56     0.2911    0.0002      0.1630     56
 319   0.2705    0.0006      0.1630     56     0.3072    0.0001      0.1630     56
 320   0.2854    0.0002      0.1630     56     0.2885    0.0002      0.1630     56
 321   0.3046    0.0001      0.1630     56     0.3141    0.0000      0.1630     56
Run 2.                                                                            
 329   0.6273    0.0000      0.1676     53     0.5372    0.0000      0.1676     53
 330   0.1766    0.0570      0.1616     57     0.2553    0.0012      0.1616     57
 331   0.0974    0.6514      0.1616     57     0.1435    0.1913      0.1616     57
 332   0.1508    0.1497      0.1616     57     0.1124    0.4671      0.1616     57
 333   0.1949    0.0263      0.1616     57     0.1131    0.4599      0.1616     57
 334   0.2297    0.0067      0.1660     54     0.1918    0.0377      0.1660     54
 335   0.2447    0.0028      0.1645     55     0.1780    0.0613      0.1645     55
 336   0.2225    0.0086      0.1645     55     0.1976    0.0273      0.1645     55
 337   0.2019    0.0192      0.1616     57     0.2354    0.0036      0.1616     57
 338   0.1824    0.0450      0.1616     57     0.2397    0.0029      0.1616     57

Table 9-6.
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Variograms.

Sample variograms were calculated for each variable using

different class widths.  Class widths reported below are those

that provided the most detail (smallest class width) without

causing the variogram values to become excessively noisy.

After trying classes with both equal class widths (unequal

numbers of pairs in each class) and equal numbers of pairs in

each class (unequal class widths), it was decided to use

classes with equal class widths since no discernible

improvement resulted from using classes with equal numbers of

pairs.

Because the field was relatively long (220 m) and narrow

(52 m) it was difficult to estimate the degree of anisotropy

in the data.  Therefore the data were all assumed to be

isotropic (variograms have the same value for a given

separation distance, h, regardless of the direction of h).

Catch Can Depths.  Variograms calculated for catch can

depths showed about the same range of autocorrelation (20 m)

for each irrigation in Experiment 2 (Figure 9-1, top).  The

spherical model was fit by eye with a nugget of zero and range

of 20 m.  The spherical model is:

  :C0 + C1[1.5h/a - 0.5(h/a)
1/3],  0 # h # a

((h) = ;                                [9-9]
  <C0 + C1,  h > a

where C0 is the nugget, C1 is the sill minus the nugget, a is
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the range, and h is the separation distance.  The sill value

was different for variograms from each irrigation.  In

contrast, the relative variograms for the 3 irrigations were

quite similar, at least up to 30 m separation distance (Figure

9-1, bottom).  The range and nugget were again chosen as 20 m

and zero, respectively but a common sill value of 0.057 could

be chosen for all 3 irrigations.  Between 30 and 45 m the

variogram values for irrigations 1 and 3 were very similar but

those for irrigation 2 were higher.  For kriging the most

useful variogram model information is contained within the

range, so the discrepancies between variogram values at

separation distances above 20 m should be of little concern.

The class width was 7.5 m and there were 7 classes for these

variogram calculations.
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Figure 9-1.  (top) Variograms for catch can depths from 3
irrigations, Experiment 2.  (bottom) Relative variograms for the
same 3 irrigations.
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Figure 9-2.  Sample variograms for the change in storage due to
irrigation, 3 irrigations, Experiment 2.

Change in Storage.  Variograms calculated for the change

in storage due to irrigation showed no discernible spatial

dependence for any of the 3 irrigations in Experiment 2

(Figure 9-2).  Change in storage data were essentially random

and there is no point in fitting a variogram model.  Using

smaller class widths, e.g. 5 m, for the variogram calculations

was not successful in revealing spatial dependence at small

separation distances.
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Profile Water Content.  Relative variograms were

calculated for profile water contents measured on 16 days

after irrigation during Experiment 2.  Data from the 5

locations within 1.5 m of the field edge were omitted from the

analysis to avoid edge effects.  A class width of 5 m gave the

most informative variogram values.  For separation distances

below 35 m a linear model, with a nugget of 0.014 (the

relative variogram is unitless) and slope of 0.00102, appeared

appropriate (Figure 9-3).  There is a change in depth to sand

(increasing from the SE corner to the NW corner) which may

explain the odd behavior of the variogram at separation

distances above 35 m.  Since the linear model is only

appropriate up to 35 m it would be important to use a kriging

neighborhood of 35 m or less.  Considering the large number of

separate days data that were combined to create the relative

variogram, it is remarkable how little dispersion occurred

about the mean sample relative variogram values.  This is a

result of the high degree of time invariance for these data.
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Figure 9-3.  Sample relative variogram values for profile water
content after irrigation, Experiment 2.  Squares represent the
average value for all days, error bars show maximum and minimum
values.

Midday Temperature Depression.  The maximum temperature

difference between the reference dry soil and drying soil,

(To,max - Td,max), was measured daily for Experiments 2 and 3.

For Experiment 2 the drying soil temperature was obtained by

scanning the area around the access tubes in a circular

pattern while making 50 readings with the infrared

thermometer, then taking the average reading.  For Experiment

3 drying soil temperatures were taken by pointing the infrared

thermometer at the top of each ML and averaging 10 readings
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made without moving the point of focus of the thermometer.

Despite the differences in technique there were more

similarities than differences between the 2 experiments in the

spatial variability of (To,max - Td,max).

Sample variograms for Irrigations 1 and 2 of Experiment

2 are shown in Figure 9-4.  For the first 2 to 5 days after

irrigation there appears to be some spatial dependence

especially for the Irrigation 2 data.  The range is difficult

to discern but is perhaps 10 m.  On later days there appears

to be little spatial dependence.  The instability of spatial

dependence is illustrated by the relative variogram plot of

Figure 9-5.  It was not possible to reduce the sample

variograms for different days to a single relative variogram

model.  The average relative variogram showed a small degree

of spatial dependence.  For these analyses and those to

follow, the locations within 1.5 m of the field edge were

omitted to reduce edge effects.  Except for days immediately

after irrigation these data could be considered spatially

independent.
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Figure 9-4.  Sample variograms for (To,max - Td,max), (top) after
Irrigation 1, (bottom) after Irrigation 2, Experiment 2.
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Figure 9-5.  Relative variograms for (To,max - Td,max) after
Irrigations 1 and 2, Experiment 2.

Experiment 3 data showed even less spatial dependence

than did (To,max - Td,max) data from Experiment 2.  As for

Experiment 2, the variance tended to be higher for data from

days immediately after irrigation, declining thereafter

(Figure 9-6).  Again, it was not possible to find a single

variogram model that would fit relative variograms from all

days (Figure 9-7).  The average relative variogram also showed

no spatial dependence.
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Figure 9-6.  Sample variograms for (To,max - Td,max) from
Experiment 3, (top) Run 1 and (bottom) Run 2.
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Figure 9-7.  Sample relative variograms for (To,max -
Td,max) for Experiment 3, (top) Run 1 and (bottom) Run 2.
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Evaporation.  Daily evaporation was measured with ML's at

the 57 field locations during Runs 1 and 2 of Experiment 3.

As for temperature data, sample variograms based on

evaporation data showed little spatial dependence (Figure

9-8).  On the 4th and 5th days after the second irrigation

there appears to be some spatial dependence but this was

considered to be an anomaly since on all other days no spatial

dependence was observed.

For both Run 1 and Run 2 sample relative variograms

showed the same lack of spatial dependence (Figure 9-9).

These evaporation data appear to be randomly distributed with

no spatial dependence.  Because both temperature and

evaporation data are spatially independent there is no reason

to attempt kriging or cokriging with these data.
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Figure 9-8.  Sample variograms for evaporation, (top)
Run 1 and (bottom) Run 2, Experiment 3.
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Figure 9-9.  Sample relative variograms for evap-
oration, Experiment 3, (top) Run 1 and (bottom) Run 2.
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Kriging.

Ordinary (punctual) kriging was done using the GEOEAS

program KRIGE.  Before kriging, the variogram models were

examined by cross-validation using the GEOEAS program XVALID.

In the usual kriging procedure the estimated value at the

sample location is, by definition, equal to the sample value.

Cross-validation is a procedure in which kriging is used to

estimate the sample value at each sample location as if the

value were not already known.  The estimated and sample values

are then compared.  If the variogram model is a good one then

the average estimated value should be close to the average

sample value.  The error, [Z*(xi) - Z(xi)], should be close to

zero.

In practice a dimensionless error, called the reduced

error, ,r, is defined as:

,r = [Z
*(xi) - Z(xi)]/F(xi)             [9-10]

where F(xi) is the kriging standard deviation.  The reduced

error should have a mean close to zero and should have

variance close to one if the variogram model is good (Viera et

al. 1983).  In the GEOEAS nomenclature the reduced error is

called the zscore and its mean and standard deviation are

reported.
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Catch Can Depths.  The usefulness of the relative

variogram depicted in Figure 9-1 (bottom) was tested as

follows.  Recall that in Chapter 8 the ranked sample locations

were plotted vs. average relative difference.  Examination of

Figure 8-1 shows that location 17 was close to the mean

relative difference and was stable over time.  The sample

values at location 17 were 3.99, 2.03 and 1.64 cm for

irrigations 1, 2 and 3, respectively.  Assuming a zero nugget

and constant range of 20 m, the spherical relative variogram

model was scaled for each irrigation by multiplying the sill

value by the square of the mean value of catch can depth for

that irrigation, with the mean value set equal to the value at

location 17.  Thus this procedure was also a test of the time

invariance concept and location 17 as representative of the

mean.

Cross-validation resulted in mean reduced errors of

0.043, 0.075 and 0.048 for the 3 irrigations (Table 9-7).  The

mean sample values were accurately reproduced with the largest

error amounting to 1.6% of the mean.  The standard deviation

of the reduced errors was close to 1 with the largest

difference being 0.19 for Irrigation 3.  Plotting of estimated

vs. sample values for the 3 irrigations shows that points are

clustered about the 1 to 1 line, a result of the mean being

successfully reproduced (Figure 9-10).
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Cross-validation for catch can depth data, 3 irrigations,
Experiment 2.  Ordinary kriging using GEOEAS.

Search Ellipse Parameters:       Distance type : Euclidean
  R Major :        35.0          Num. sectors  :  1
  R Minor :        35.0          Max pts/sector:  8
  Angle   :         0.0          Min pts to use:  1
  Min Dist:         0.0          Empty sectors :  0

Variogram Model: Spherical
Irrigation  Nugget   Sill    Range (m)
   1         0.0     0.907     20.0
   2         0.0     0.236     20.0
   3         0.0     0.153     20.0

Irrigation 1.                              Kriging
             Variable  Estimate  Difference  Std. Dev.  Zscore
 Minimum       2.620     2.810      -1.238     .261    -1.559
 25th %tile    4.035     4.122       -.214     .361     -.474
 Median        4.347     4.362       -.065     .487     -.119
 75th %tile    4.825     4.675        .323     .725      .509
 Maximum       5.615     5.103       2.292    1.134     2.021
 N               52        52          52       52        52
 Mean          4.351     4.393        .042     .566      .043
 Std. Dev.      .694      .477        .592     .237      .815

Irrigation 2.                              Kriging
             Variable  Estimate  Difference  Std. Dev.  Zscore
 Minimum       .805      .999       -.768     .133    -1.896
 25th %tile   2.082     2.214       -.166     .184     -.720
 Median       2.254     2.254        .041     .249      .171
 75th %tile   2.375     2.335        .172     .370      .596
 Maximum      2.831     2.718       1.480     .579     2.558
 N              52        52          52       52        52
 Mean         2.192     2.229        .036     .289      .075
 Std. Dev.     .404      .280        .354     .121     1.005

Irrigation 3.                              Kriging
             Variable  Estimate  Difference  Std. Dev.  Zscore
 Minimum       .819      .907       -.607     .107    -2.308
 25th %tile   1.543     1.597       -.177     .148     -.908
 Median       1.664     1.701        .020     .200      .129
 75th %tile   1.850     1.784        .169     .298      .667
 Maximum      2.208     2.165        .734     .466     2.782
 N              52        52          52       52        52
 Mean         1.669     1.683        .015     .233      .048
 Std. Dev.     .292      .205        .276     .097     1.192

Table 9-7.
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Figure 9-10.  Kriging estimates from cross-validation vs.
actual catch can depths for 3 irrigations, Experiment 2.

A disturbing tendency is that extreme values were

estimated as being closer to the mean than was actually the

case.  This results in the regression lines having a low

slope, quite different from the 1 to 1 line.  This is partly

a result of the fact that kriging is a smoothing process and

the kriging variance will always be smaller than the sample

variance (Warrick et al. 1986).  It may also be a result of

undersampling in some areas of the field.  The r2 values seem

low but this is not unusual.  For cross-validation on 11

different variables Viera et al. (1983) found r2 values
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ranging from 0.30 to 0.48 for the regression of estimated vs.

sample values.  The overall r2 value of 0.89 and regression

line close to the 1 to 1 line were a result of the fact that

the mean depth varied widely from irrigation to irrigation and

that the mean was well estimated.  On the basis of the values

for mean and standard deviation of the reduced error, the

procedure described above, for using the relative variogram

and a time invariant sample location representing the mean,

appears to be a good one.

Kriging was done on a 5 by 5 m grid for the Irrigation 1

catch can depths using a 35 m circular search pattern.  The

contour plot of kriged estimates is realistic (Figure 9-11)

and, as expected, slightly smoother than the contour plot of

measured values (Figure 9-13).  The contour plot of measured

values was created using an inverse weighting method according

to the square of the distance to the 10 nearest neighbors.

The kriging standard deviations range from near zero in areas

of the field that were heavily sampled to 1.3 cm at the NE

corner which was far from any samples (Figure 9-12).
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Figure 9-11.  Contours of kriging estimates of catch can depths,
Irrigation 1, Experiment 2.  Contour lines are on 0.3 cm
intervals.
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Figure 9-12.  Contours of kriging standard deviation, catch can
depths, Irrigation 1, Experiment 2.  Contours are on 0.1 cm
intervals.
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Figure 9-13.  Contours of measured catch can depths, Irrigation
1, Experiment 2.  Contours are on 0.3 cm intervals.
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Profile Water Content.  The relative variogram model

depicted in Figure 9-3 was tested by cross-validation using

data from 5 days.  Examination of Figure 8-4 revealed that

location 21 was closest to the mean profile water content and

was stable over time.  The value of profile water content at

location 21 was therefore used to represent the mean profile

water content.  The relative variogram model was scaled to fit

each day's data by multiplying the nugget and sill values of

the relative linear model by the square of the mean (Table

9-8).

In GEOEAS nomenclature the sill of a linear model is

defined as the slope multiplied by the range.  Therefore the

sill values for GEOEAS in Table 9-8 are the result of

multiplying the slope by an appropriate range (35 m was used)

and then multiplying by the square of the mean.  Since the

linear model does not have a maximum value (as do the

spherical and gaussian models for example) it is inappropriate

to apply the sill concept here.  The sill and range are only

used in GEOEAS to define the slope of the linear model.

The reduced mean error and standard deviation from cross-

validation, using the models in Table 9-8, were in all cases

close to zero and 1, respectively (Table 9-9).  The largest

difference between mean estimated and measured profile water

content was 0.5%.  Histogram plots of the frequency of the

error term showed the error term to be approximately normally
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Linear variogram model parameters for profile water content
scaled from relative variogram nugget and slope using depth
at location 21 as representative of the mean depth.

       Mean   Relative Relative  For GEOEAS KRIGE & XVALID
 Day   Depth   Nugget   Slope    Nugget   Sill   Range (m)
  77   22.70   0.014   0.00102     7.22   18.4      35 
  80   27.57   0.014   0.00102    10.64   27.1      35 
  81   26.87   0.014   0.00102    10.11   25.8      35 
  82   26.61   0.014   0.00102     9.91   25.3      35 
  83   26.16   0.014   0.00102     9.58   24.4      35 
  85   25.57   0.014   0.00102     9.15   23.3      35 
  90   26.13   0.014   0.00102     9.56   24.4      35 
  92   27.61   0.014   0.00102    10.67   27.2      35 
  93   27.06   0.014   0.00102    10.25   26.1      35 
  94   26.99   0.014   0.00102    10.20   26.0      35 
  95   26.98   0.014   0.00102    10.19   26.0      35 
  96   26.58   0.014   0.00102     9.89   25.2      35 
  98   26.57   0.014   0.00102     9.88   25.2      35 
 100   26.34   0.014   0.00102     9.71   24.8      35 
 102   26.90   0.014   0.00102    10.13   25.8      35 
 103   26.67   0.014   0.00102     9.96   25.4      35 

Table 9-8.

distributed.  Plotting the estimated vs. measured profile

water contents showed the points to be clustered about the

mean (Figure 9-14).  Points for different days tended to plot

in the same positions showing the stability of profile water

content over time.  This is a second case in which the use of

a relative variogram model, in conjunction with a location

known to be representative of the mean, has proven to be

useful.
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Cross-validation results for ordinary kriging on profile water
contents for selected days, Experiment 2, using linear variogram
models given in Table 9-8.

                                           Kriging
Day 80.    Variable   Estimate  Difference  Std. Dev.  Zscore
N        *      52         52          52        52       52
Mean     *  27.946     28.009        .063     4.309     .001
Std. Dev.*   5.586      3.542       5.008      .585    1.130
Day 82.  *
N        *      52         52          52        52       52
Mean     *  27.454     27.524        .071     4.159     .003
Std. Dev.*   5.542      3.610       4.762      .564    1.114
Day 85.  *
N        *      52         52          52        52       52
Mean     *  27.173     27.282        .109     3.997     .009
Std. Dev.*   5.394      3.605       4.570      .542    1.114
Day 92.  *
N        *      52         52          52        52       52
Mean     *  27.821     27.944        .123     4.316     .011
Std. Dev.*   5.464      3.692       4.437      .586    1.003
Day 100. *
N        *      51         51          51        51       51
Mean     *  26.892     27.015        .124     4.118     .013
Std. Dev.*   5.241      3.540       4.246      .541    1.005
Day 102. *
N        *      50         50          50        50       50
Mean     *  27.439     27.567        .128     4.218     .013
Std. Dev.*   5.295      3.535       4.318      .552    1.002

Table 9-9.
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Figure 9-14.  Kriging estimates from cross-validation vs.
measured profile water contents for 5 days, Experiment 2.

Kriging was done for day 92 as an example.  Kriging was

done on a 5 by 5 m grid using a 35 m circular radius search

pattern.  The kriged estimates are realistic and reflect the

the fact that depth to sand was greater on the west end of the

field where estimates were up to 36 cm profile water content

(Figure 9-15).  By contrast, estimates at the east end of the

field were as low as 20 cm.  A contour map of measured values

was produced using the same method as for catch can depths.

Contours of measured values were quite similar to those of
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kriged values but less smooth (Figure 9-17).  The kriging

standard deviation was evenly distributed with a few areas

approaching zero where sampling was heavy and with values of

7 and 8 cm in the SW and NE corners, respectively, where

sampling was very light (Figure 9-16).
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Figure 9-15.  Kriging estimates of profile water content for day
92, Irrigation 2, Experiment 2.  Contour intervals are on 2 cm
increments.
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Figure 9-16.  Kriging standard deviation for day 92 profile water
content estimation, Irrigation 2, Experiment 2.  Contour
intervals are on a 1.0 cm increment.
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Figure 9-17.  Contours of measured profile water content, day 92,
Irrigation 2, Experiment 2.  Contours are on a 2.0 cm increment.
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Summary.

Of five variables examined only catch can depths and

profile water content showed consistent spatial structure.

The variogram for catch can depths was fit well by a spherical

model and that for profile water contents with a linear model.

The relative variograms for both these variables were stable

over time and allowed the fitting of a single relative

variogram model to each data set with the result that the

relative variogram model could be scaled to provide a model

for any particular day's data by simply multiplying the nugget

and sill by the variable's mean squared.  The usefulness of

this was enhanced by the fact that the mean value could be

reliably estimated by using a location identified as

representative of the mean.  These locations were identified

by the time invariance analysis of Chapter 8.  Thus a strong

link was demonstrated between the existence of time invariance

for a variable and the usefulness of kriging on that variable.

There was little discernible spatial structure for

evaporation nor for the change in storage due to irrigation.

The structure apparent for evaporation data from days 332 and

333, Experiment 3, is associated with an influx of warm air

causing mean daily air temperature to rise 3 oC.

Data from some days seemed to show spatial structure for

the midday temperature difference between dry and drying soil.

However, data from many other days showed no spatial
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structure.  There appeared to be some structure on the warm

day 333 during Experiment 3.  There was more structure

apparent for the first 2 days after Irrigations 1 and 2 of

Experiment 2.  It was much warmer during the late March -

early April time period of Experiment 2 than during the

November - early December period of Experiment 3.  Thus it

appears that the appearence of spatial structure associated

with soil surface temperature may be linked to ambient

temperature or potential evapotranspiration.

The 'here today - gone tomorrow' nature of spatial

structure associated with evaporation and surface temperature

data makes questionable the utility of spatial variability

analysis of these variables.  In particular the idea, that

cokriging using evaporation and temperature data could be used

to reduce the number of ML samples needed to estimate

evaporation, is shown to be questionable due to the lack of

time invariant spatial structure.

Soil surface temperature is a rapidly changing

environmental variable.  In Chapter 3 it was shown that the

surface temperature at midday could vary by up to 10 oC over

the 30 to 40 minutes necessary to measure all 57 locations in

the field.  Changes in cloud cover and wind speed were

associated with these temperature changes.  Such rapid

temperature variations render problematic the task of

measuring the spatial structure of soil surface temperature.
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The geostatistical approach was initially developed to study

the spatial structure of ore grades, a variable that changes

with the millenia.  It is perhaps asking too much to apply

these same techniques to labile environmental variables.


